“Big Data” and “Next-Generation Analytics” on Gartner’s Top 10 Strategic Technology Trends for 2012 List

On Monday at the Gartner Symposium, David Cearley presented Gartner’s annual list of the Top 10 Strategic Technology Trends for 2012. Among those that made the list are big data and next-generation analytics. Although the two items are listed separately, the two technologies go hand-in-hand and can provide the most compelling and effective experience for exploring and navigating through complex data.

Gartner's Top 10 Strategic Technology Trends in 2012[Source: PC Magazine]

It comes as no surprise that the two items were listed, as organizations are besieged by an explosive growth of information coming from disparate data sources every day. This data can be structured, semi-structured, and unstructured. With the annual growth rate well over 100%, analyzing and understanding big data has become a top priority.

For far too long, organizations have spent too much money and resources on collecting data, scrambling around to ensure data integrity, and finally, wondering how to make use of this data. More and more, organizations are starting to realize the need for technologies that can help them maximize the value of their data assets.

Traditional analytics that have relied on computers and algorithms to do the work for them are starting to be deemed limiting, especially with the growth of unstructured data. As Gartner continues to push big data and next-generation analytics, organizations need to adopt technologies that can drive business decision-making in ways not possible before. This new wave of analytic techniques, or advanced visual analysis, harnesses the most powerful pattern recognition system available — the human brain. Advanced visual analysis will help organizations discover key insights that were hidden in the past and turn the challenges of big data into opportunities.

Advertisements

Big Data = Big Opportunities through Advanced Visual Analytics

We live in a fascinating data-driven world full of challenges and opportunities – the world of Big Data. With the continuing, explosive growth of data in terms of quantity, diversity of sources and types, and speed, there are tremendous opportunities to explore this “Brave New World of Big Data” to discover new insights that were hard to uncover in the past.

In recognition of these new opportunities, more and more organizations are adding data visualization applications powered with advanced analytics, such as Social Network Analysis (SNA), into their portfolio of advanced analytics – what is often called advanced visual analysis. The growing recognition of the role of advanced visual analysis as part of analytics toolkits is highlighted by recent acquisition of i2 Technologies by IBM, growth of visualization based business intelligence products from QlikView, TIBCO/Spotfire, and Tableau as well as the recent move by Facebook to provide Open Graph as part of their makeover. This is indeed an exciting time for advanced visual analysis.

The growing use of advanced visual analysis applications, especially graph-based systems powered with SNA techniques, have led to remarkable recent track record of success in combating global terrorism, cyber warfare, and criminal fraud activities in various industries. New technologies such as pad computing devices, GPS and biometric based systems, and next generation network management systems for integrated communication of audio, data, and video, the continuing growth of online social communities, as well as integrated demand-supply chain systems have led to rise in demand for using these applications to discover insights from not just highly structured data in traditional enterprise repositories but from all data types across all types of information repositories. The increased success of these applications in different industries will continue to fuel the growth in advanced visual analysis applications of all types in the coming years.

The ongoing industry recognition of the power of advanced visual analysis will yield better integrated analytic systems in many cases, better defined visual analysis infrastructure in others, and overall a superior experience and results for organizations focused on maximizing the value of their Big Data.   This is a fascinating and exciting time for those of us involved in visualization, advanced visual analytics, and advanced data analytics of all types. We are entering an era where our ability to discover actionable insights in the right context is leading to a fundamental paradigm shift in how we leverage our data assets to create more agile, efficient, and intelligent organizations everywhere.

Deloitte’s Top Tech Trends 2011

In Deloitte’s top Tech Trends of 2011 report, data visualization is named as one of the (re)emerging enablers. Representing complex data in simple visual forms that are easy to communicate is nothing new; but up until recently, some data visualization tools that enterprise and government organizations are using have stopped short.

So what’s new in 2011?

Users can explore their data in new ways with emerging technologies such as mobile devices, tablets with multi-touch interfaces, and cloud computing –mixed with awesome features like interactivity, animation, intuitive touch functions, link analysis, and predictive modeling. These new types of visualization technologies enable you to proactively discover new insights, unlike the static and passive views in many visualization technologies in the past. This holds true especially with the growing amounts of unstructured data such as e-mails, tweets, text messages, Facebook posts, and so on. Visualization will be crucial for organizations needing to organize and draw correlations in relationships among these types of data.

Another difference in 2011 is that the underlying architecture has evolved. Visualization technology can now handle large-scale data, and the end result will still be intuitive and easy to analyze to enhance decision-making. Further, these technologies will be designed with the business end-user in mind, rather than requiring users to have a deep knowledge and understanding of the underlying data structures and SQL.

Read Deloitte’s full report.